首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16700篇
  免费   20篇
  国内免费   1篇
林业   3645篇
农学   1298篇
基础科学   137篇
  2817篇
综合类   731篇
农作物   2101篇
水产渔业   1846篇
畜牧兽医   1148篇
园艺   1113篇
植物保护   1885篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   2748篇
  2017年   2707篇
  2016年   1185篇
  2015年   77篇
  2014年   31篇
  2013年   31篇
  2012年   805篇
  2011年   2144篇
  2010年   2114篇
  2009年   1265篇
  2008年   1330篇
  2007年   1594篇
  2006年   49篇
  2005年   119篇
  2004年   130篇
  2003年   176篇
  2002年   73篇
  2001年   16篇
  2000年   52篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   12篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   11篇
  1987年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1960年   1篇
排序方式: 共有10000条查询结果,搜索用时 243 毫秒
991.
The demand on agriculture to meet food security goals and mitigate environmental impacts requires multifunctional land-use strategies. Considering both farmer motivations and rural development needs, one option is to transition marginal farmland to perennial crops. In this study, we considered the potential for Multifunctional Perennial Cropping Systems (MPCs) that would simultaneously provide production and ecosystem service benefits. We examined adoption potential of MPCs on marginal farmland through an agricultural landowner survey in the Upper Sangamon River Watershed in Illinois, USA. We identified adoption preferences among landowners in conjunction with socio-demographic characteristics that would facilitate targeted implementation. Hierarchical cluster analysis and discriminant analysis identified landowner categories and key factors affecting adoption potential. Landowner age, appreciation for plant diversity, and future farm management involvement were the strongest predictors of potential MPCs adoption. The landowner categories identified within the survey data, supplemented with focus group discussions, suggested a high adoption potential farmer profile as a young, educated landowner with known marginal land they would consider converting to MPCs for improved soil and water quality conservation.  相似文献   
992.
Our understanding of the processes influencing the storage and dynamics of carbon (C) in soils under semi-arid agroforestry systems in Sub-Saharan Africa (SSA) is limited. This study evaluated soil C pools in woodlot species of Albizia lebbeck (L.) Benth., Leucaena leucocephala (Lam.) de Wit, Melia azedarach (L.), and Gmelina arborea Roxb.; and in farmland and Ngitili, a traditional silvopastoral system in northwestern Tanzania. Soil organic carbon (SOC) was analyzed in the whole soil to 1 m depth and to 0.4 m in macroaggregates (2000–250 μm), microaggregates (250–53 μm), and silt and clay-sized aggregates (<53 μm) to provide information of C dynamics and stabilization in various land uses. Synchrotron-based C K-edge x-ray absorption near-edge structure (XANES) spectroscopy was also used to study the influence of these land use systems on the soil organic matter (SOM) chemistry to understand the mechanisms of soil C changes. Whole soil C stocks in woodlots (43–67 Mg C ha?1) were similar to those in the reserved Ngitili systems (50–59 Mg C ha?1), indicating the ability of the planted woodlots on degraded lands to restore SOC levels similar to the natural woodlands. SOC in the woodlots were found to be associated more with the micro and silt-and clay-sized aggregates than with macroaggregates, reflecting higher stability of SOC in the woodlot systems. The continuous addition of litter in the woodlots preserved recalcitrant aromatic C compounds in the silt and clay-sized aggregates as revealed by the XANES C K-edge spectra. Therefore establishment of woodlots in semi-arid regions in Tanzania appear to make significant contributions to the long-term SOC stabilization in soil fractions.  相似文献   
993.
The Chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) is a small shrub with edible fruits. It is native to northern and western China. This species was included as a medicinal plant in the “Chinese Pharmacopeia” and has emerged as an economically important crop for fresh fruit consumption, processing into juice and wine and nutraceutical products as well. To gain a better understanding of flavonoid biosynthesis and help develop value added products and better cultivars with greater health benefits, we analyzed total flavonoid content (TFC), composition, and radical scavenging activities in fruit extracts of 16 Chinese dwarf cherry genotypes. Fruit peel TFC ranged from 33.5 to 72.8 mg/g RE·FW (RE: rutin equivalent, FW: fresh weight) while fruit flesh TFC ranged from 4.3 to 16.9 mg/g RE·FW. An HPLC analysis revealed that fruit extracts contained 14 flavonoids with considerable variation in their profiles across genotypes. The most abundant flavonoids in most genotypes were proanthocyanidin B1 (PA-B1), proanthocyanidin B2 (PA-B2), phloretin 2′-O-glucoside (PG), and phloretin 2′,4′-O-diglucoside (PDG). Principal component analysis showed that PG, PA-B1, and PA-B2 had large, positive factor loading values in the first principal component for each genotype. Increased scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals was apparent in genotypes ‘Nongda 4’, ‘Nongda 3’, ‘Nongda 6’, ‘Wenfenli’, and ’10-32’, suggesting promising applications in the production of nutraceutical products. In summary, our results will aid in breeding, fruit processing, and developing medicinal uses of the Chinese dwarf cherry.  相似文献   
994.
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture, soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa (Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate (P N), stomatal conductance (g s), and water-use efficiency (W UE) in the seedlings exhibited a clear threshold response to the relative soil water content (R SWC). The highest P N and W UE occurred at R SWC of 51.84 and 64.10%, respectively. Both P N and W UE were higher than the average levels at 39.79% ≤ R SWC ≤ 73.04%. When R SWC decreased from 51.84 to 37.52%, P N, g s, and the intercellular CO2 concentration (C i) markedly decreased with increasing drought stress; the corresponding stomatal limitation (L s) substantially increased, and nonphotochemical quenching (N PQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II (PSII) in the form of heat, and the reduction in P N was primarily due to stomatal limitation. While R SWC decreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry (F v/F m) and the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (q P), and N PQ; in contrast, minimal fluorescence yield of the dark-adapted state (F 0) increased markedly. Thus, the major limiting factor for the P N reduction changed to a nonstomatal limitation due to PSII damage. Therefore, an R SWC of 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% ≤ R SWC ≤ 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F. suspensa.  相似文献   
995.
Continuous increases in anthropogenic nitrogen (N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon (C) storage. Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch (Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at 100 kg N ha?1 a?1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However, soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However, microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, δ13C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition (1) altered microbial biomass and activity without affecting soil C in light fractions and (2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.  相似文献   
996.
Community forest management helps in mitigating deforestation and forest degradation by addressing the negative aspects of rural livelihoods such as poverty and social exclusion. It is important in regulating global climate by encouraging sequestration of carbon in shoots, roots and soils. We studied the status of community forest management, forest resource harvest and carbon stocks in two community forests of the mid hill region of central and western Nepal. The study was based on primary and secondary data collected through carbon stock measurement from field visits and allometric equations, household surveys, focus group discussions, key informant interviews, and review of past studies. Socioeconomic variables such as gender, age group, livestock and landholding status were related to resource utilization, conservation, and management of community forest. Forest resources such as timber, firewood, fodder and leaf litter were harvested in sustainable ways. People were involved in forest thinning, co-management meetings, guarding and planting trees for forest conservation and management. Density and carbon stock of trees increased gradually in comparison to a previous study. We recommend further research on other community forests for more accurate and better results.  相似文献   
997.
Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological impact evaluation. In this study, throughfall, stemflow and interception were measured in a pure Larix principis-rupprechtii Mayr.(larch) plantation in the Liupan Mountains of northwestern China during the growing season(May–October) of 2015, and simulated using a revised Gash model. During the study period, the total precipitation was499.0 mm; corresponding total throughfall, stemflow and canopy interception were 410.3, 2.0 and 86.7 mm,accounting for 82.2, 0.4 and 17.4% of the total precipitation, respectively. With increasing rainfall, the canopy interception ratio of individual rainfall events decreased initially and then tended to stabilize. Within the study period, the simulated total canopy interception, throughfall and stemflow were 2.2 mm lower, 2.5 mm higher and0.3 mm lower than their measured values, with a relative error of 2.5, 0.6 and 15.0%, respectively. As quantified by the model, canopy interception loss(79%) mainly consisted of interception caused by canopy adsorption, while the proportions of additional interception and trunk interception were small. The revised Gash model was highly sensitive to the parameter of canopy storage capacity,followed by the parameters of canopy density and mean rainfall intensity, but less sensitive to the parameters of mean evaporation rate, trunk storage capacity, and stemflow ratio. The revised Gash model satisfactorily simulated the total canopy interception of the larch plantation within the growing season but was less accurate for some individual rainfall events, indicating that some flaws exist in the model structure. Further measures to improve the model's ability in simulating the interception of individual rainfall events were suggested.  相似文献   
998.
Arbuscular mycorrhiza fungi(AMF) are vital in the regeneration of vegetation in disturbed ecosystems due to their numerous ecological advantages and therefore are good indicators of soil and ecosystem health at large. This study was aimed at determining how the seasonal, vegetation cover density, edaphic and anthropogenic factors affect AMF root colonization(RC) and spore density(SD)in Desa'a dry Afromontane forest. AMF RC and SD in the rhizosphere of five dominant woody species, Juniperus procera, Olea europaea, Maytenus arbutifolia, Carissa spinarum and Dodonaea angustifolia growing in Desa'a forest were studied during the rainy and the dry seasons in three permanent study vegetation cover density plots(dense, medium, and poor). Each plot(160 x40 m~2) has two management practices(fenced and unfenced plots) of area. A 100 g sample of rhizosphere soil from moisturefree composite soil was used to determine spore density.Spore density ranged from 50 to 4467 spores/100 g soil,and all species were colonized by AMF within a range of 4–95%. Glomus was the dominant genus in the rhizosphere of all species. Vegetation cover density strongly affected SD and RC. The SD was significantly higher(p 0.05) in the poor vegetation cover density than in the other two and lowest in the dense cover; root colonization showed the reverse trend. Management practices significantly(p 0.05) influenced AMF SD and RC, with the fenced plots being more favoured. Seasons significantly(p 0.05) affected RC and SD. More RC and SD were observed in the wet period than the dry period. Correlating AMF SD and RC with soil physical and chemical properties showed no significant difference(p 0.05) except for total nitrogen. Disturbance, vegetation cover density, season and total nitrogen are significant factors that control the dynamics and management interventions to maintain the forest health of dry Afromontane forests.  相似文献   
999.
Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, which is usually neglected, is to avoid mixing organic matter with road materials during excavation and embankment construction. The current study aimed to assess the influence of organic matter on the physical properties and mechanical behaviors of forest soil and to analyze the relation between the amount of organic matter and the behavior of forest soil as road material. A typical soil sample from the study area was collected beside a newly constructed roadbed. The soil was mixed with different percentages of organic matter(control treatment, 5, 10, and 15% by mass) and different tests including Atterberg limits, standard compaction, and California bearing ratio(CBR) tests were conducted on these different soil mixtures. The results showed that soil plasticity increased linearly with increasing organic matter.Increasing the organic matter from 0%(control) to 15%resulted in an increase of 11.64% of the plastic limit and 15.22% of the liquid limit after drying at 110 ℃. Also,increasing the organic matter content reduced the soil maximum dry density and increased the optimum moisture content. Increasing the organic matter from 0 to 15% resulted in an increase of 11.0% of the optimum moisture content and a decrease of 0.29 g/cm~3 of the maximum dry density. Organic matter decreased the CBR, which is used as the index of road strength. Adding 15% organic matter to the soil resulted in a decrease of the CBR from 15.72 to 4.75%. There was a significant difference between the two drying temperatures(60 and 110 ℃) for the same organic matter mixtures with lower water content values after drying at 60 ℃. The results revealed the adverse influence of organic matter on soil engineering properties and showed the importance of organic matter removal before excavation and fill construction.  相似文献   
1000.
We conducted a study to find out if arbuscular mycorrhizal (AM) fungi (Acaulospora scrobiculata, Scutellospora calospora) and phosphate solubilizing bacteria (PSB, Paenibacillus polymyxa) inoculation either individually or in combinations can improve Acacia auriculiformis seedling growth, uptake of nutrients and quality in a phosphorus deficient tropical Alfisol. The seedlings were assessed for various growth and nutrient uptake parameters after 60 days of treatment. Inoculation with P. polymyxa stimulated mycorrhizal formation. Seedling height, stem girth, taproot length, number of leaves and leaf area, plant dry matter production, nodulation, and nodular dry weight were significantly higher for seedlings that were either dual inoculated or triple inoculated compared to individual inoculation of AM fungi or PSB, and uninoculated seedlings. Dual and triple application of AM fungi and PSB also significantly improved the nutrient contents of shoots and roots and nutrient uptake efficiencies. The calculated seedling quality indexes of the AM fungi and PSB inoculated seedling were 25–208% higher than uninoculated seedlings. These findings show that A. auriculiformis seedlings when dual inoculated or triple inoculated performed better than seedlings inoculated with the microbes individually and compared with uninoculated control seedlings. We conclude that bioinoculation is important for the production of high-quality A. auriculiformis seedlings in tree nurseries for planting in nutrient deficient soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号